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Two methods for the calculation of orbital moments are discussed. In particular previous calculations 
for YCo, with the recursion method are compared to a new linear muffin-tin orbital atomic sphere 
approximation (LMTO-ASA) calculation. The magnetic properties of YCos are discussed with empha- 
sis on contributions of the different cobalt atom sites (3s and 2~). The effect of magnetocrystalline 
anisotropy is discussed. The orbital moment contribution is calculated for CaCuOr,the parent of the 
new superconducting cuprates. B 1990 Academic press, IIIC. 
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In the present study we will concentrate 
on the properties of transition metal atoms 
in solids. The electronic structure of transi- 
tion metal atoms consists of practically inac- 
tive core electrons, 4s’ electrons, and an 
incomplete shell of 3d electrons. In a solid 
a transition metal loses its two s electrons 
and becomes a positive ion. Since the 3d 
electrons form an incomplete shell they 
might lead to a substantial orbital moment 
contribution to the magnetic moment. For 
example, since the basic level of Co*+ 
(which has seven d electrons) is 4F9,2 (I) 
one should expect an orbital moment of the 
order of 3.0 ,..&a (I). However, the experi- 
mental value of the orbital moment of pure 
bulk cobalt (2) (with hcp crystal structure) 
is only 0.1472 pB. This effect is known as 
quenching of the orbital angular momentum 
of transition metals. In a nonuniform, crys- 
tal field the angular momentum component 
in a certain direction (e.g., m,) is no longer 
constant and even might average to zero. 

It is even more interesting to study the 
orbital moment of cobalt in compounds. 
YCos is quite peculiar, since the magneto- 
crystalline anisotropy of this compound is 
10 times higher than that of pure cobalt, 
even though pure yttrium is in a spin singlet 
state and isotropic. This compound is of in- 
terest because it is representative of inter- 
metallic rare earth transition metal com- 
pounds, known to be useful as permanent 
magnets (2). The discovery of SmCo, (2), a 
compound with extremely large magneto- 
crystalline anisotropy, opened a new area in 
the search for permanent magnets. Due to 
the relatively high cost of the constituents, 
mass production of SmCo, never occurred. 
More recently it has been found that by in- 
cluding boron atoms, one can obtain stable 
compounds of iron and rare earth metals 
with large magnetocrystalline anisotropies. 
In particular, Nd,Fe,,B seems to be the per- 
manent magnet material of the future (3). 

The crystal structure of NdzFe,,B is very 
complicated and first principles (ab initio) 
calculations are very time consuming be- 

0022-45%/90 $3 .OO 
Copyright 0 1990 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



218 SZPUNAR AND SMITH 

0 RARE EARTH ATOM 

0 COBALT ATOM (2~) 

8 COBALT ATOM (39) 

FIG 1. RCoS unit cell (CaCu5 crystal structure). 

cause there are 68 atoms per unit cell (4). 
However, these compounds have a tetrago- 
nal crystallographic structure which is re- 
lated to the hexagonal CaCu, structure (5) 
shown in Fig. 1. As a result it is hoped that 
realistic progress in understanding the mag- 
netic properties of these very complex com- 
pounds may be made by an accurate analy- 
sis of R(rare-earth)Co, compounds. 

The first calculations of the magnetic 
properties of such a compound, YCos , were 
made (6) using the self-consistent aug- 
mented plane-wave (APW) method (7). In 
those calculations the assumption of equiva- 
lence of both types of cobalt sites (Co(2c) 
and Co(3g)) (see Fig. 1) meant that the re- 
sults could not predict a local magnetic an- 
isotropy. It is known from a polarized neu- 
tron diffraction study (8) that there is a 
significant difference between these two 
sites (as revealed in the local spin and orbital 
moments). In addition, NMR measurements 
suggest that a competitive anisotropy may 
exist between these two types of cobalt sites 
(9). Theoretical calculations (10) by means 
of the recursion method (II) of the local 
orbital moments on the two cobalt sites sup- 
port the experimental results. On the other 
hand Kurihare et al. (12) have calculated 
anisotropy constants for YCo, by consider- 
ing only d bands with spin-orbit (s-o) inter- 
action included and find that there is very 
poor agreement with the experimental data 
unless it is assumed that there are very small 

differences (~10-~) in the number of elec- 
trons for different magnetization directions. 

It is the purpose of the present study to 
investigate this problem by means of elec- 
tronic structure calculations wherein these 
cobalt sites are not constrained to be equiva- 
lent. The methods employed are discussed 
in the next two sections while the results 
are presented and discussed in the following 
sections. 

We also present calculations of the orbital 
moment in CaCuO,, a compound which is 
related to high temperature supercon- 
ductors. 

2. The Recursion Method 

As discussed above the most important 
electrons in transition metal atoms are the d 
electrons. Since they are much more local- 
ized than the p or s electrons the Hamilto- 
nian may be simplified such that only hop- 
ping terms to nearest neighbors need to be 
taken into account. This model is called the 
tight binding method. In addition Heine et 
al. (13) proposed the use of an orthonormal 
basis set in which the Hamiltonian becomes 
a tridiagonal matrix. This led to a savings 
in the computer memory required and the 
Green’s function (G(E)) is of the form of the 
continued fraction: 

Gd-9 = 
b: ’ (1) 

E--a,-- 
. . . tw 

where a;, bi are calculated coefficients and 
t(e) is a terminator which when chosen prop- 
erly might improve the calculations even 
further. In our calculations (10) we used real 
angular momentum wave functions, clusters 
with about 5000 atoms, and 16 levels of the 
continued fraction expansion. To allow for 
the magnetic ordering we simply used the 
Hubbard model in the Hartree-Fock ap- 
proximation (14) which leads to the shift of 
energy for spin up and spin down electrons 
respectively by 
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TABLE I 

REAL REPRESENTATION OF THE ANGULAR 
MOMENTUM WAVE FUNCTIONS FOR d AND p 

ELECTRONS 

A, = w-s>, (2) 

where U is the effective intraatomic Cou- 
lomb energy and (n -,) is the average number 
of electrons with opposite spin. At low tem- 
peratures the spin-flip interaction can be 
neglected and the above equation is used 
separately for spin up and spin down elec- 
trons until a self-consistent solution is ob- 
tained for the magnetic moment: 

m, = hg,/-d(n,) - h,>>. (3) 

So far in this treatment spin-orbit interac- 
tion is not taken into account and the states 
are doubly degenerate with respect to the 
sign of the azimuthal quantum number. This 
leads to a reduction of the number of orbitals 
used in the calculations and real spherical 
harmonics are a convenient choice. In Table 
I the real angular momentum wave functions 
for 1 = 2 (d electrons) and for 1 = 1 (p 
electrons) are shown. The choice of spheri- 
cal harmonics is particularly convenient for 
orbital moment calculations as has been 
demonstrated previously (15). 

The spin-orbit splitting for transition met- 
als is usually small and thus it is sufficient 
to take it into account non-self-consistently 
in the last iteration (16). A convenient 
method of introducing this effect in tight 
binding methods has been proposed pre- 
viously (15). The spin-orbit interaction is 

A(so) = 6l.s (4) 

where I and s are the orbital and spin mo- 
ment operators respectively and 4 is the 
spin-orbit coupling constant. It becomes 

very simple in the real spherical harmonic 
representation (17): 

A(so)ti=r+ l/2) = 1(5/2) (5) 
A(,,)ti=/-1/2) = - (1 + 1)(5/2). 

Using Clebsch-Gordon coefficients (18) 
we can decompose our wave functions as 
follows: 

forj = 1 + t 

mj=m+~,-(1-t l)rm(l 
Tj'im,l = l/(21 + I)‘” (Vl + m + 1 *,\I 

+ -*k+,), (6) 

andforj = 1 - f 

mj=m+B,-lSmrI-1 

Pjm,[ = l/(21 + l)“‘(VKLVk 
- dl+m+ l*k+,.) (7) 

Our wave functions are degenerate with 
respect to the sign of m. A simple approxi- 
mate method of obtaining the density of 
states with spin-orbit interaction included 
is to shift the decomposed density of states 
by the corresponding A(s--0) energy (15) for 
corresponding j, mj, 1. In Table II we present 
explicitly the corresponding decomposition 
coefficients for the density of states of d and 
p electrons. The orbital moment can then be 
calculated from the formula: 

It is easy to notice from Table II that summa- 
tion of the weighted splittings within one 
orbital llmls is zero, thus in general we 
should not expect a change of the position 
of the Fermi energy after splitting. How- 
ever, in the case of strongly varying density 
of states around the Fermi energy the self- 
consistently adjusted Fermi energy should 
be found. Also from Table II we can check 
that in the case of small spin polarization, 
the spin-orbit splitting contribution for any 
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TABLE II 

PROPORTION OF d AND p ELECTRONS RESPECTIVELY FOR SPIN UP AND DOWN AND DIFFERENT m VALUES 
0’ = I k l/2) 

Spin up Spin down Spin up Spin down 

m j = 2.5 j= 1.5 j = 2.5 j = 1.5 m j = 1.5 j = 0.5 j= 1.5 j = 0.5 

-2 l/10 4110 l/2 0 -1 l/3 213 1 0 
2 l/2 0 l/10 4110 1 1 0 l/3 213 

-1 2110 3/10 4110 l/10 0 213 l/3 213 l/3 
1 4110 l/10 2110 3/10 
0 315 215 315 215 

lm orbital is close to the value for both spin 
up and spin down density of states of elec- 
trons but with opposite sign. The only possi- 
bility to obtain a substantial orbital moment 
contribution in this case is through the pres- 
ence of some nonuniform feature of the den- 
sity of states around the Fermi energy. This 
implies that a very high accuracy in the den- 
sity of states and the position of Fermi en- 
ergy is required in this case. 

3. The LMTO-ASA Method 

The LMTO-ASA method, based on local 
density-functional theory, is known to be a 
quite good approximation for closely 
packed systems and has been successfully 
used for rare earth and transition metals 
(19-21). It has been shown recently (22) 
that it leads to a simple first-principles tight- 
binding method. The advantage of the 
LMTO-ASA method is that the transfer ma- 
trix factorizes with canonical structure con- 
stants which are energy independent and 
need to be calculated only once for a given 
crystal structure and set of potential param- 
eters describing the atomic spheres. This 
feature of the method makes self-consistent 
calculations less time-consuming and allows 
one to perform calculations for fairly com- 
plicated crystal structures. 

In the present calculations we employ a 
valence basis set of s, p, d, cf) electrons 

with the frozen core approximation. Argon- 
like cores have been used for the cobalt, 
calcium, and copper atoms, krypton-like 
ones for the yttrium atoms, and helium-like 
ones for the oxygen atoms. The von 
Barth-Hedin local (spin) density approxi- 
mation was used to describe the exchange- 
correlation energy (22). In the self-consis- 
tency iterations the spin-orbit coupling was 
neglected but all other quasi-relativistic ef- 
fects were included. After self-consistency 
in the charge and spin distribution has been 
reached, spin-orbit coupling was included 
in the final iteration (23). The pseudo-pertur- 
bational method has been used (29) by just 
adding the spin-orbit term as a perturbation 
into the Hamiltonian with the spherical po- 
tential; U(T) (notation as in Ref. (29)): 

e(s.1) = cm22/r du(r)ldr 2 (:‘+ -f) . (9) 

This approximation has been used success- 
fully in our previous paper (23) for orbital 
moment calculations for pure cobalt. 

4a. Local Orbital Moments in YCo, 

First we discuss a self-consistent quasi- 
relativistic calculation of the electronic 
structure in YCos in which spin-orbit cou- 
pling was not included. Our calculations are 
similar to those of Malik ef al. (6) for YCo, 
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except that we have allowed the previously 
mentioned distinction between the different 
cobalt sites. 

Convergence is very difficult to obtain for 
YCo, . This has been noticed previously (6) 
and it is even more difficult when one per- 
mits the two types of cobalt sites to be differ- 
ent. Convergence was obtained only by as- 
suming a small mixing parameter (5%) in 
the iterative process. Ninety points were 
sampled in the irreducible wedge of the Bril- 
louin zone and the density of states (DOS) 
was integrated with an energy step of 0.5 
mRy . 

f electrons were included as part of the 
valence shell on the cobalt sites. In order 
to investigate their influence, an additional 
iteration after convergence was performed 
without including the f electrons. The re- 
sults for the local magnetic moments were 
not very dependent on inclusion of higher 1 
expansion contributions. 

In Figs. 2-4 the local DOS are presented 
for the Co(2c), Co(3g), and Y sites, respec- 
tively. In Fig. 5 the total DOS per atom is 
shown. The previously mentioned problem 
in obtaining convergence is probably due to 
the high DOS of the minority spin electrons 
at the Fermi energy. In fact the peak of 
the minority spin density of states is at the 
Fermi energy. This result is in agreement 
with experimental expectations (24) and 
also with previous calculations (6, 14). 

It is known that in some RCo, compounds 
metamagnetism for the cobalt atoms is ob- 
served and the external magnetic field can 
change drastically the local moment on co- 
balt (25). It appears that cobalt, in forming 
a compound with rare earth metals, changes 
from a strong to a weak ferromagnet. As 
can be seen from Table III, the cobalt spin 
moment in YCos, 1.29 pa for Co(2c) and 
1.44 ,~a for Co(3g), is reduced in comparison 
with the moment per cobalt atom for the 
ideal hcp structure of pure cobalt calculated 
with the same method. The calculated mo- 
ment for cobalt atoms in the hcp structure 

4 5.P 
ENERGY IRyl 

FIG. 2. Local density of states per atom for Co(2c) 
sites in YCo, for spin up and down electrons, respec- 
tively: s electrons, p electrons, d electrons. 

of pure cobalt varied between 1.5 and 1.49 
pa (23) with changes of the c/a ratio and 
between 1.55 and 1.49 pa with variation of 
the lattice parameters (26). These trends 
help to explain the reduction of the cobalt 
moment in YCo, in comparison with that in 
pure hcp cobalt. 

It is commonly believed (27) that the re- 
duction of the cobalt moment in rare 
earth-cobalt compounds is due to charge 
transfer from the rare earth metal to cobalt. 
The present results do not support this idea 
since they show the opposite charge trans- 
fer. It must be pointed out, however, that 
charge transfer in a compound is not a well- 
defined quantity and, in both our calcula- 
tions and those of Malik et al. (6), it is depen- 
dent on the assumed values of the atomic 
sphere radii. In our ASA calculations over- 
lapping spheres were used while Malik et al. 
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FIG. 3. Local density of states per atom for Co(3g) 
sites in YCo, for spin up and down electrons, respec- FIG. 4. Local density of states per atom for yttrium 

tively: s electrons, p electrons, d electrons. sites in YCos for spin up and down electrons, respec- 
tively: s electrons, p electrons, d electrons. 

(6) used nonoverlapping, touching spheres. 
We have chosen the radii of the atomic 
spheres to be the atomic sphere radius in 
pure cobalt and pure yttrium, respectively. 
They were adjusted so that the equilibrium 
pressure value should be close to zero. A 
slightly larger sphere radius was assumed 
on Co(2c) because a higher orbital moment 
is expected on this site and it is known that 
spin-orbit interaction expands the lattice 
parameters (28). The atomic sphere radii uti- 
lized were R[Co(2c)] = 2.56 a.u., R[Co(3g)] 
= 2.52 a.u., and R[Y] = 3.60 a.u. We be- 
lieve that the charge transfer model can be 
misleading because there are also other im- 
portant factors such as the local crystal sym- 
metry, the lattice constants, or the c/a ratio 
which can affect the magnetic moment 

-2 
a 
. 

-0.0 -05 -cl2 a1 
EE!W (Ry) 

values. FIG. 5. Total density of states per atom for YCo, for 
Experimental values for the spin and or- spin up and down electrons. 
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TABLE III 

LOCAL SPIN MAGNET MOMENTS (&, CHARGE 
DENSITIES (e), AND n(q) 

Site s P d f Total 

Magnet moment/atom 

Co(2c) 
Co(3g) 
Y 

- o.oco5 -0.0399 1.3315 0.0004 1.2915 
-0.0032 -0.0279 1.4719 0.0038 1.4445 
- 0.0298 -0.0786 -0.2651 - -0.3734 

Charge atom 

Co(Zc) t 0.3203 0.3258 4.4131 0.0326 5.0918 
Co(2c) 1 0.3208 0.3657 3.0816 0.0322 3.8003 
Co(3g ) t 0.3250 0.3135 4.4677 0.0319 5.1381 
Cd% ) 1 0.3282 0.3414 2.9958 0.0281 3.6936 
YT 0.3203 0.4752 0.8781 1.6737 
Yl 0.3501 0.5538 1.1432 - 2.0471 

I 

Co@) t 0.2204 0.5085 2.5546 0.0334 3.3169 
Co(2c) 1 0.1630 0.4304 38.3706 0.1533 39.1173 
Co(3g ) + 0.1319 0.5130 2.8126 0.0197 3.4772 
Co(3s) 1 0.0387 0.4520 12.8100 0.1751 13.4758 
Yt 0.3992 0.2952 1.1118 1.8062 
Yi 0.0751 0.6064 1.9978 2.6793 

bital contributions to the local moment (8) 
for the 2c and 3g sites are the following: 
rnp = 1.31 pa, m, 2c = 0.46 + 0.09 pB , rnif = 
1.445 pa, and rnig = 0.275 + 0.07 The pg. 
present spin contributions to the magnetic 
moment are in very good agreement with 
these experimental values as can be seen 
from Table III. We obtained a non-zero spin 
moment on the yttrium site in agreement 
with previous calculations by Malik et al. 
(6). They found the 4d electron contribu- 
tions to the magnetic moment on the yttrium 
site t0 be eqUa1 t0 0.3 ps. A non-zero mo- 
ment on the yttrium site was obtained in the 
recursion method calculations (14). Due to 
the higher hybridization of spin down elec- 
trons of yttrium with the minority spin d 
electrons of cobalt, a negative polarization 
on yttrium was found. This is induced mag- 
netization and all s, p, and d electrons have 
negative magnetic moments on yttrium in 
agreement with what has been shown ana- 
lytically (24). 

In Figs. 6 and 7 energy band structures 
are presented for spin up and spin down 

electrons for different symmetry directions. 
There is not much difference between the 
band structure of pure cobalt (26) and that 
of YCo,. The number of occupied d states 
is almost the same (pure cobalt n,? L = 
7.515 (26) but in YCo, the minority d bands 
of cobalt are squeezed to lower energies due 
to changes of lattice parameters and hybrid- 
ization with the yttrium d electrons. The 
main difference between the two different 
cobalt sites is that the DOS at the Fermi 
energy on Co(2c) is higher than on Co(3g) 
(cf. Figs. 2 and 3, bottom panels). In Fig. 8 
we present the local DOS for d electrons on 
cobalt sites calculated without distinction 
between the two types of cobalt sites. We 
can see that similarly to Co(3g) in this case 
the minority peak at the Fermi levelis lower 
than the corresponding peak on the 2c site. 
This is probably responsible for the differ- 
ences in the orbital moment and local anisot- 
ropy contribution. Thus in anisotropy calcu- 
lations we should distinguish between 2c 
and 3g sites as well as consider aspherical 
effects in the charge density. 

As mentioned above, the polarized neu- 
tron diffraction study (8) revealed a large 
difference between the local orbital mo- 
ments of cobalt on the 2c and 3g sites 
(m$ = 0.46 + 0.09 pB, rni = 0.275 + 
0.07 pa). Using the method described in 
Section 2 in our earlier calculations (IO) we 
obtained m$ = 0.17 and 0.25 ps and 
m3g = 0.04 and 0.09 pB for two different 
chiices for the spin-orbit interaction cou- 
pling constants of 0.0034 and 0.005 Ry, re- 
spectively. These values are smaller than 
the neutron diffraction measurements but 
NMR measurements by Streever (9) of the 
anisotropy of the orbital moment, Am(L) = 
mall - m,, , give smaller values namely 
0.092 pB for the 2c site and -0.042 pa for 
the 3g site. 

We note that both the tight binding model 
and the LMTO-ASA method do not take 
into account fully the effect of asphericity 
of the electron charge density. In order to 



224 SZPUNAR AND SMITH 
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6. Energy band structure of YCos for spin up electrons. 

eliminate some of the accumulated error due 
to the spherical approximation, we should 
calculate the difference between the local 
orbital moments on these two sites. In addi- 
tion we note that the orbital moment values 
on the cobalt sites are very sensitive to the 
assumed Fermi energy which was adjusted 
self-consistently. The Fermi energy shifts 
from the value -0.1134 Ry without inclu- 
sion of spin-orbit coupling to a higher value 
of - 0.0963 Ry with spin-orbit coupling in- 
cluded. 

In Fig. 9 we present fully quasi-relativis- 
tic calculations of the energy band struc- 
ture in YCo,. Since spin-orbit interaction 
couples spin up and spin down states, we 

r AK r MK t -l A UHM U 

have to diagonalize the full Hamiltonian 
matrix. Both the spin up and spin down 
bands are shown on Fig. 9. To calculate 
the orbital moment we make a projection 
of the states into fm space. The projected 
density of states for m, = -t2 on the 
Co(3g) and Co(2c) sites is presented in 
Fig. 10, left and right panels, respectively. 
There are two remarkable peaks on the 
Co(2C) site for m, = 2. These peaks are 
the main contribution to the orbital mo- 
ment on the Co(2c) site. The peak closer 
to the Fermi energy is due to the minority 
electron peak on this site. 

We obtained the difference between local 
orbital moment on the 2c and 3g sites to be 

0.5 

0.2 

0.1 

0.4 

7. Energy band structure of YCos for spin down electrons. 
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FIG. 8. Local d electron density of states per atom 
for the cobalt sites in YCos calculated with forced 
equivalency of the two types of cobalt sites (Co(2c), 
Co(3g)). 

equal to Am,, = 0.18 pa. The main contribu- 
tion to this difference of the orbital moment 
comes from the d electrons with azimuthal 
orbital quantum number m, equal to ?2. 
The d electron contribution on site 2c is 
in agreement with our previous calculations 
(IO) and equals 0.17 pa but on the 3g site we 
found at present small negative d electron 
contribution (-0.04 pa) while in semiemp- 
irical calculations we find a small positive 
orbital moment; 0.04 and 0.09 pa. In both 
cases we had to adjust the Fermi energy 
value due to strong features in the density 
of states at the Fermi energy for the cobalt 
atoms. 

4b. Orbital Moment Calculations for 
CaCuO,, the Parent of the Cuprate 
Family of High T, Superconductors 

It is known by now that LSD approxima- 
tion has difficulties in obtaining magnetic 
ordering in the insulating phases related to 
high T, superconductors (29). Since these 
difficulties arose one speculation was that 

possibly the orbital moment might stabilize 
magnetic ordering in these compounds (30). 
The recently discovered compound (31), 
CaCuO,, is the 12 + UJ limit of the series 
B&Sr,Ca,-,Cu,O,+,. It is ideal for orbital 
moment calculations since it has a smaller 
unit cell (only one CuO, layer per unit cell) 
and thus is tractable with spin-orbit interac- 
tion included. In Fig. 11 we show the unit 
cell of CaCuO, (a = 3.86 and c = 3.2 A) (31) 
together with the important orbitals around 
the Fermi energy: d,2-,2 on copper sites 
and one orbital per oxygen site pX or pY de- 
pending in which direction is the clos- 
est copper atom. We performed first 
LMTO-ASA calculations with all quasi-rel- 
ativistic effects included except s-o interac- 
tion until self-consistency in the charge dis- 
tribution has been obtained. The atomic 
sphere radii were chosen as R[Cu] = 2.3 
a.u., R[O] = 2.57 a.u., R[Ca] = 3.13 a.u. 

It is impossible to create stable magnetic 
ordering in this compound within the local 
spin density functional approximation. 
Even a metamagnetic solution is very unsta- 
ble, so that we had to keep a large external 
field in order to create small spin polariza- 
tion on copper atoms. Then as above we 
included s-o pseudo-pertubationally in the 
last iteration and calculated the orbital mo- 
ment. We find no contribution to the forma- 
tion of the orbital moment within the accu- 
racy of our calculation. 

An intuitive explanation may be based on 
the fact that in the new high T, superconduc- 
tors all states around the Fermi energy are 
“in plane” states with maximum azimuthal 
quantum number corresponding to the I, 
quantum number (32) and the corresponding 
orbitals are shown schematically on Fig. 11. 
Since the orbital moment operator is anti- 
symmetric with respect to the sign change 
of the x or y components for copper atoms 
there is zero orbital moment contribution 
from d,2-,2 orbitals (on a square lattice). It 
might be argued that in La,CuO, , due to the 
interaction of the CuO, planes with apical 
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Y Co, k-o included 1 
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FIG. 9. The quasi-relativistic energy band structure in YCos 

oxygens, there would be non-zero orbital 
moments on Cu. After our work was com- 
pleted we learned (33) that in this case as 
well zero orbital moment contributions have 
been found. 

4. Implications of the Orbital Moment 
Calculations for the Magnetocrystalline 
Anisotropy 

The first magnetocrystalline anisotropy 
calculation from first principles was due to 
Brooks (34). By introducing spin-orbit in- 
teraction one would find a small variation in 
the dependence of the energy on the direc- 
tion of the magnetic moment. This is the 
one-ion contribution to the magnetocrystal- 
line anisotropy which usually is the domi- 
nant part. In this study we shall concentrate 
also on the one-ion anisotropy contribution. 
To ,estimate the anisotropy Brooks (34) cal- 
culated the difference in energy for two per- 
pendicular directions of magnetism using 
perturbation theory. He found satisfactory 
agreement with experiments for nickel and 
iron. 

To calculate anisotropy from first princi- 
ples one should perform fully relativistic 
band structure calculations for different di- 

rections of the applied magnetic field.In hex- 
agonal types of structure the magnetic space 
group is different for magnetization parallel 
to the [OOOl] and [lOlO] directions (35). As 
a result one needs to consider different Bril- 
louin zones for different directions of mag- 
netization. 

One must be aware also of the fact that 
the anisotropic energy contribution is very 
small and below the accuracy of our calcula- 
tions. As has been pointed out recently 
thousands of k points have to be used in 
order to obtain convergence for anisotropy 
constants (36). Kurihare et al. (12) do not 
seem to have realized how small the contri- 
bution of the anisotropy energy is to the 
total energy. In their calculation of the YCoS 
anisotropy they obtained the wrong sign for 
the value of the anisotropy constant unless 
“feeble” differences in the electron occupa- 
tion were introduced for different directions 
of magnetization. However, they assumed 
very small differences in the number of elec- 
trons but it is apparent from simple calcula- 
tions that even these contribute to the an- 
isotropy energy significantly. From their 
results (12) we find at the Fermi energy (+ 
= 0.2 Ry), the density of states; N(+) = 100 
electrons/Ry/unit cell and that the “feeble” 



DECOMPOSED DENSITY OF STATES 
crystal field effects are included (36). The 
importance of the crystal field contribution 
indicates that to obtain the correct value of 

M the anisotropy, very accurate, fully relativ- 
a” 

I* ’ 
istic, self-consistent calculations ought to be 
performed, where the crystal field effect is 
automatically included. Some progress has 
been made in this direction recently, but 
unfortunately limited by computer re- 

M =-2 
16 c 

I 

I sources (37, 38). 
COBALT 3G SITE COBALT 2C SITE 

24!- 1 
Thus in the present work we do not focus 

I I I I I I 
-0.5 -0.2 -0.1 -0.5 -0.2 -0.1 on self-consistent calculations of the anisot- 

ENERGY (Fly) ropy constants but rather on finding out 
what is the origin of the large magnetcrystal- 

FIG. 10. The decomposed local density of states for 
m = 2 and m = - 2 on the Co(3g) and Co(2c) sites as 

line anisotropy in YCo5. 

indicated. 
In our previous work (39) using a simpli- 

fied single-ion crystal field model (to de- 
scribe local magnetocrystalline anisotropy 

change of electron number An = 1 .O* 10m3e 
of cobalt) it has been shown that the large 

corresponds to AE = 2*10P4 Ry/unit cell. 
anisotropy of this compound is due to sig- 

An energy difference of 2.10m4 Ry/unit cell 
nificant deviations of the c/a ratio from the 
ideal value m. 

leads to a difference AK in K, the anisotropy 
constant of 5.2*10e7 erg/cm3. Thus the an- 

To obtain valuable information about con- 
tributions from different sites to the anisot- 

isotropy they obtained is strictly artificial. 
On the other hand these calculations give us 

ropy, local orbital moment calculations 

a good picture about the accuracy required 
seem to be quite reliable even within a tight 

in anisotropy calculations. 
binding model (40). Our prediction that the 

The other work which explores the model 
Co(2c) site has a higher orbital moment than 

Hamiltonian proposed by Callaway (16) for 
Co(3g) site is in concert with experimental 

3d transition metals (where s-o effect and 
results where a higher anisotropy contribu- 

crystal field effects were considered as 
tion from Co(2c) site has been predicted 

equally important perturbations) shows the 
(41). 
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